## **Ethylene Glycol (EG)**



EG is present in some antifreeze, coolant, brake fluid, and solvent products. Ingestion is potentially lethal. CONSULT A CLINICAL TOXICOLOGIST EARLY

## **Toxicity / Risk Assessment**

Ingestion of >1 mL / kg 100% EG is potentially lethal

Manage all deliberate ingestions as potentially lethal

Accidental "less than a mouthful" exposures are usually benign

Dermal and inhalation exposure does not cause toxicity

## **Clinical features:**

- Rapidly absorbed: peak concentration 1-4 hours post ingestion
- Metabolized to acids responsible for clinical toxicity
- During the 1-2 hours post EG exposure, the osmol gap (OG) may be high (a normal OG does not exclude exposure), and the anion-gap (AG) and pH will be normal
- As EG is metabolized, the OG↓, pH↓ and the AG↑
- Co-ingestion of ethanol delays onset of toxicity

**STAGE 1 (1-12 hours)**: ataxia, slurred speech, drowsiness (similar to ethanol intoxication)

**STAGE 2 (6-24 hours)**: AG↑/acidosis, ↑RR ↑HR ↑BP ↓GCS

**STAGE 3 (24-72 hours)**: progressive acidosis, ARF,  $\downarrow$ Ca<sup>2+</sup>, seizures, coma, death

Calcium oxalate crystalluria is diagnostic, but present in <50% of cases

**Management** *More acidosis = worse outcome. Early treatment = good prognosis*Any delay in commencing treatment with an antidote results in more severe toxicity.

**Decontamination**: Activated charcoal does not adsorb EG and is not indicated.

**Laboratory**: Obtain U&E/VBG/ethanol/glucose/AG/measured osmolality at the same time.

**Calculated osmolarity** = 2[Na<sup>+</sup>] + urea + glucose + 1.25[ethanol] (concentrations in mmol/L)

Osmol Gap (OG) = Measured osmolality - Calculated osmolarity

**EG** concentrations are generally not readily available; use surrogate markers (pH/AG/OG)

**Antidote**: Alcohol dehydrogenase blocker such as **Ethanol** or **Fomepizole (4-MP)** 

See separate *Ethanol* or *Fomepizole* guideline

Indications for discussion with clinical toxicologist for consideration of Rx with an antidote:

documented history of ingestion & OG>10 **OR** suspicion of ingestion AND at least 2 of the following:

pH <7.30, HCO3 <20, OG >10, urinary oxalate crystals OR EG concentration of > 20 mg/dL  $\,$ 

**8.4% Sodium Bicarbonate**: correct acidaemia if pH <7.30 (bolus of 1-2 mL/kg 8.4% solution)

## **Enhanced elimination**

Intermittent haemodialysis is the preferred modality. (Discuss with clinical toxicologist)

*Indications*: acidosis / ARF / haemodynamic instability (continue until acidosis resolves)

- Increase ethanol / 4-MP infusion rate during haemodialysis

**<u>Cofactors</u>**: IV pyridoxine 50 mg q6h & thiamine may help in metabolism to non-toxic metabolites.

<u>Disposition</u> - Discharge pending mental health assessment if well + normal pH + HCO3 > 20

+ OG <10 + ethanol is undetectable at least 4-hours post ingestion